Abstract
Ni-rich TiNi shape memory alloys were subjected to the effect of equal channel angular extrusion (ECAE) processes at 773 K by Bc path. The effects of ECAE processes on microstructures evolution and phase transformation behaviors were investigated. The initial 60–80 μm equiaxed coarse grains of samples were elongated along the shearing force direction of ECAE and refined to 300–400 nm after eight passes ECAE. The R phase transformation of Ni-rich TiNi shape memory alloys was stimulated by ECAE processes within a larger temperature range. The martensite transformation peak temperature (Mp) dropped in previous 1–3 ECAE treatments, but the dropped Mp increased gradually with the increase of ECAE processes. Ti 3Ni 4 phase was observed in the regions with high density of dislocations after ECAE treatment. Reasons for microstructures evolution and phase transformation changes were also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.