Abstract

High-energy ball-milling in hexane medium was employed to prepare Nobel Zr-based bulk metallic glasses (BMGs) alloy of three different nominal compositions Zr47Be23Ni15Ti15, Zr50Be20Ni15Ti15 and Zr52Be18Ni15Ti15, numbers indicate at.%). The glass forming ability was found to increase with decreasing Zr and increasing Be content, which can be ascribed to the enhanced atomic size mismatch of the constituents on Be addition. Amorphous Zr47Be23Ni15Ti15 powder undergoes two-stage crystallization with onset temperatures at 640 and 700 K and glass transition temperature Tg at 566 K. In contrast, the Zr50Be20Ni15Ti15 and Zr52Be18Ni15Ti15 samples remained crystalline to a certain extent even after prolonged milling and contained FCC Zr crystallites. Structural characterization was done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, thermal analyses were performed by means of differential scanning calorimetry (DSC) thermogram to justify the experimental findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.