Abstract
The viscosity and viscoelasticity of polyelectrolyte solutions with a single electrostatic interaction have been carefully studied experimentally and theoretically. Despite some theoretical models describe experimental results well, the influence of multiple interactions (electrostatic and hydrophobic) on rheological scaling is not yet fully resolved. Herein, we systematically study the microstructures and rheological properties of short-side-chain perfluorosulfonic acid (S-PFSA), the most promising candidate of a proton exchange membrane composed of a hydrophobic backbone with hydrophilic side-chains, in water/2-propanol. Small-angle X-ray scattering confirms that semiflexible S-PFSA colloidal particles with a length of ~38 nm and a diameter of 1-1.3 nm are formed, and the concentration dependence of the correlation length (ξ) obeys the power law ξ~c-0.5 consistent with the prediction of Dobrynin et al. By combining macrorheology with diffusing wave spectroscopy microrheology, the semidilute unentangled, semidilute entangled, and concentrated regimes corresponding to the scaling relationships ηsp~c0.5, ηsp~c1.5, and ηsp~c4.1 are determined. The linear viscoelasticity indicates that the entanglement concentration (ce) obtained from the dependence of ηsp on the polymer concentration is underestimated owing to hydrophobic interaction. The true entanglement concentration (cte) is obtained by extrapolating the plateau modulus (Ge) to the terminal modulus (Gt). Furthermore, Ge and the plateau width, τr/τe (τr and τe denote reptation time and Rouse time), scale as Ge~c2.4 and τr/τe~c4.2, suggesting that S-PFSA dispersions behave like neutral polymer solutions in the concentrated regime. This work provides mechanistic insight into the rheological behavior of an S-PFSA dispersion, enabling quantitative control over the flow properties in the process of solution coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.