Abstract

For fabricating complex AISI304 parts with high performance by advanced powder/metallurgy technologies, cold isostatic pressing (CIP) is introduced into selective laser sintering (SLS) combined with hot isostatic pressing (HIP), which is abbreviated to selective laser sintering/isostatic pressed (SLS/IP). The effect of processing parameters on the densification of Cu–AISI304 parts is analyzed and then the influence of Cu on their relative densities, metallurgical structures, and mechanical performances are investigated. The results show that relative densities of Cu–AISI304 parts fabricated by SLS/IP are mainly influenced by CIP pressure and sintering temperature, and it is interesting to find that the formula 1−D=(1−D0)e−kP is testified by the CIP of SLS/IP. There is an antidensification phenomenon resulting from Cu and AISI304 in liquid sintering, but the relative densities of Cu–AISI304 parts can be gradually improved in HIP with Cu content increasing from 1 wt % to 3 wt %. After the above-mentioned Cu–AIS304 parts are finally hot isostatic pressed, their metallurgical structures consist of sosoloid (Cu,Ni) and (Fe,Ni) besides austenite (Fe,Cr,Ni,C), their best mechanical performances are close to those of solution treated compact AISI304 when Cu content is 3 wt %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.