Abstract
The (1 − y)Nd1−xYbx(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of the Nd1−xYbx(Mg0.5Sn0.5)O3 ceramics revealed that Nd1−xYbx(Mg0.5Sn0.5)O3 is the main crystalline phase, which is accompanied by a little Nd2Sn2O7 as the second phase. An apparent density of 6.87 g/cm3, a dielectric constant (ɛ r ) of 19.48, a quality factor (Q × f) of 117,300 GHz, and a temperature coefficient of resonant frequency (τ f ) of −61 ppm/°C were obtained when the Nd0.96Yb0.04(Mg0.5Sn0.5)O3 ceramics were sintered at 1,600 °C for 4 h. The temperature coefficient of resonant frequency (τ f ) increased from −61 to −3 ppm/°C as y increased from 0 to 0.6 when the (1 − y)Nd0.96Yb0.04(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were sintered at 1,600 °C for 4 h. 0.4Nd0.96Yb0.04(Mg0.5Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic that was sintered at 1,600 °C for 4 h had a τ f of −3 ppm/°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.