Abstract

The surface with micro-convex prepared by laser ablation is beneficial to improving the functional properties of metallic glasses (MGs). However, accompanied by the formation of micro-convex, surface hardness of the ablated area generally decreases due to the softening effect caused by laser thermal shock. Previous studies have shown that the mechanical properties of laser-ablated MG surface are significantly different when using different gas atmospheres. In this study, a comparative investigation was performed to analyze the influence of gas atmosphere (i.e. argon, nitrogen, and air) on the formation of micro-convex as well as its surface characteristics and mechanical properties. Experimental results showed that the atmosphere type did not affect the formation of micro-convex, but significantly affected the surface morphology and element composition of the laser-ablated area. The element analysis and Raman spectral measurements indicated that laser ablation in nitrogen or air atmosphere resulted in local nitridation or oxidation. The results of nanoindentation tests demonstrated that laser ablation in nitrogen or air atmosphere also resulted in surface hardness inhomogeneity, i.e., softening and hardening effects coexist in the ablated area, which could be attributed to the combined influence of laser thermal shock, the introduction of secondary phase as well as laser ablation induced loose structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call