Abstract

Refractory high-entropy alloys (RHEAs) are newly developed candidate materials for high-temperature applications. Among the existing RHEAs, NbMoTaW RHEA possesses the best mechanical properties with combined high strength, excellent thermal stability and softening resistance at elevated temperatures. However, the NbMoTaW RHEA is quite brittle at room temperature, which would restrict its application as structural material. Here, TixNbMoTaW RHEAs were developed by alloying Ti in the NbMoTaW RHEA. It shows that the room temperature ductility of the RHEAs increases from 1.9% of the NbMoTaW RHEA to 11.5% of the TiNbMoTaW RHEA, and the yield strength increases from 996MPa of the NbMoTaW RHEA to 1455MPa of the TiNbMoTaW RHEA. In addition, the TixNbMoTaW RHEAs keep stable single BCC structure up to their melt points. The present result indicates that Ti addition could effectively enhance both the ductility and strength of the NbMoTaW RHEA. The combined performance of superior mechanical properties and high thermal stability of the TixNbMoTaW RHEAs promises them an important role in engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.