Abstract

Nanograined Cu–8 at.% Cr composite was produced by a combination of mechanical milling (MM), mechanical alloying (MA) and spark plasma sintering (SPS). Commercial Cu and Cr powders were pre-milled separately by MM. The milled Cu and Cr powders were then mechanically alloyed with as-received Cr and Cu powders respectively. After milling, the powder mixtures were separately subjected to SPS. It was found that pre-milling Cr can efficiently decrease the size of grain and reinforcement, resulting in remarkable strengthening. The grain size of Cu matrix was about 82 nm after SPS. The Vickers hardness, compressive yield strength and compression ratio of the composite were 327 HV, 1049 MPa and 10.4%, respectively. The excellent mechanical properties were primarily attributed to dispersion strengthening of the Cr particles and fine grain strengthening of the Cu matrix. The strong Cu/Cr interface and dissolved Cr atoms can also contribute to strengthening of the composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call