Abstract

In this paper, rapid solidified Mg95Zn4.3Y0.7 (at.%) alloy powders produced by an inert gas atomizer were consolidated using a severe plastic deformation technique of high pressure torsion (HPT) at room temperature and 373 K. The behavior of powder consolidation, matrix microstructural evolution, and mechanical properties of the powders and compacts were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, microhardness, and tensile testing. As the HPT processing temperature increases, the powders are more plastically deformed due to decreased deformation resistance, grain boundaries are more in equilibrium, powder bonding is enhanced due to increased interparticle diffusion, hence, tensile ductility and strength increases. On the other hand, hardness decreases with the increased processing temperature, due to less dislocation density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.