Abstract

Four commercial steels with carbon contents in the range 0.1–0.5 wt.% have been examined in the as-quenched condition using electron microscopy, X-ray diffraction and atom probe tomography. The austenite had been deformed 0%, 10% and 30% prior to brine quenching. No influence of this deformation was evident on the martensite hardness or in any of the microstructure measurements. Increasing carbon content showed a well-known marked effect on the hardness but resulted in little refinement in the grain structure of the martensite. All crystal structures were cubic; no evidence of tetragonality was seen even at the highest carbon level but some systematic changes in grain boundary misorientations existed. The content of carbon in true interstitial solid solution deduced from X-ray line shifts was small (∼0.02 wt.%), and was independent of the total carbon content in the steel. Atom probe tomography showed that carbon was almost completely segregated to lath boundaries and dislocations but with an increasing density of segregates in the higher carbon steels. Calculations of diffusion distances confirmed that the segregation patterns were compatible with autotempering of the martensite during quenching. Analysis of different possible contributions to strength leads to the conclusion that segregated carbon atoms at defects behave similarly to carbon in true solid solution and that this is the largest single factor controlling the strength of as-quenched martensite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call