Abstract

A number of microstructural features indicate a difference in the dominant deformation mechanism between the higher temperature Ryoke and the lower temperature Sambagawa and Shimanto metamorphic belts of Japan. The microstructures of metacherts containing deformed radiolaria are divided into two types: in both the Sambagawa and Shimanto belts the quartz grains are tabular while in the Ryoke belt they are equiaxed. TEM studies of these metacherts revealed that the tabular grains contain abundant subboundaries consisting of large numbers of network dislocations and bowe-out dislocations, while the equiaxed grains contain no subboundaries and have low densities of dislocations which are not bowed-out. There is a corresponding difference in the textures (lattice preferred orientation of quartz): the Ryoke metacherts display randomly distributed c-axes of quartz, while the Sambagawa and Shimanto metacherts show conspicuous crossed girdle patterns with some asymmetry. There is a third difference between these regions: in the metacherts of the Ryoke metamorphic belt, the strain magnitudes determined from deformed radiolaria increase with increasing volume fraction of mica in the same metamorphic P and T conditions, while in the Sambagawa and the Shimanto metamorphic cherts the strain magnitudes decrease with increasing the mica fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.