Abstract
Abstract Magnesium and several of its alloys can absorb large amounts of hydrogen. This feature is desirable for several technological applications such as solid state hydrogen storage tanks and anodes of nickel-metal hydride (Ni-MH) batteries. For the latter, Mg-Ni alloys are considered very promising due to their high discharge capacities. Conversely, the low stability of Mg-Ni alloys in alkaline electrolytes have hindered their practical use. In the present manuscript, the effects of palladium black addition on the structure and electrochemical properties of the Mg50Ni50 (in at.%) alloy were investigated. The studied ternary alloys have general composition of Mg50Ni(50-x)Pdx, with 0 ≤ x ≤ 5 (in at.%). These alloys were synthesized by mechanical alloying from pure elements. The alloy powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS) while their electrode performances were evaluated by galvanostatic cycles of charge and discharge. The investigated alloys have multi-phase structures composed of amorphous and nanocrystalline phases, with nano-grain sizes of nearly 5 nm. Concerning the electrode performance, the best results were attained by the Mg50Ni47.5Pd2.5 alloy, which kept a high discharge capacity and improved the cycling stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.