Abstract

The effect of prestraining and bake hardening (PS/BH) on the development of microstructures and mechanical properties in thermomechanically processed transformation-induced plasticity (TRIP) steels with additions of Nb, Mo, and Al was studied by atom probe tomography (APT) and transmission electron microscopy (TEM). An increase in number density and sizes of clusters and nanoscale precipitates was observed in both steels but was more significant in the Nb-Al-Mo steel than in the Nb-Al steel. This increase could be explained by the possible fast diffusion of Nb and Mo atoms at low temperatures, as was observed for surface diffusivity. The contributions of cluster strengthening and precipitation strengthening to the yield strength increment after PS/BH were estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.