Abstract
Intermediate-temperature solid oxide fuel cells (SOFCs) based on gadolinia-doped ceria (GDC) electrolyte were successfully fabricated. The cells were composed of Ni–GDC anode substrate, Ni–GDC anode functional layer, GDC electrolyte, (La0.8Sr0.2)CoO3 (LSC)–GDC cathode functional layer, and LSC cathode current collector. Anode substrates were fabricated by die compaction of granules prepared by spray drying process, and poly(methyl methacrylate) (PMMA) was employed as a pore former for rapid transport of reactant and product gases across the thick anode. The shape and the distribution of pores in the anode substrate were significantly affected by the properties of suspension in spray drying process, and a uniform and interconnected pore structure was obtained by increasing solids loading due to reduced phase separation. High solids loading also improved thermal compatibility between the anode and the electrolyte in a co-firing process, resulting in reduced micro-defects in the electrolyte. Substantial reduction of anode concentration polarization as well as increased open circuit voltage was measured in cell test, and the maximum power density of 550 mW cm−2 was obtained with humidified H2 as fuel and air as oxidant at 650 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.