Abstract

The mode-selection method based on a single-mode microstructured optical fiber (MOF) in the multicore fiber (MCF) lasers is presented. With an appropriate choice of the designed parameters of the MOF, the power coupling coefficient between the fundamental mode (FM) of the MOF and the in-phase mode can be much higher than those between the FM and the other supermodes. As a result, the in-phase mode has the highest power reflection on the right-hand side of the MCF laser cavity, and dominates the output laser power. Compared to the MCF lasers based on the free-space Talbot cavity method, the MCF lasers with the MOF as a mode-selection component have higher effectiveness of the in-phase mode selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call