Abstract

In the last years metallic magnetic calorimeters (MMC) showed an energy resolution of a few eV for x-rays up to 10 keV. This makes MMCs a promising and powerful tool for many applications where photons or energetic massive particles have to be detected—like absolute activity measurements of radioactive isotopes, high resolution x-ray spectroscopy and x-ray fluorescence material analysis. However, in order to fulfill all requirements of these applications and to allow to reach the maximum resolving power a consequent micro-fabrication of the MMC detectors is needed. The micro-fabrication of metallic magnetic calorimeters requires reliable deposition and patterning processes for niobium structures with high critical currents and for paramagnetic sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.