Abstract

Microstructured alumina hollow fibers, which contain a plurality of radial microchannels with significant openings on the inner surface, have been fabricated in this study and used to develop an efficient catalytic hollow fiber reactor. Apart from low mass-transfer resistance, a unique structure of this type facilitates the incorporation of Ni-based catalysts, which can be with or without the aged secondary support, SBA-15. In contrast to a fixed bed reactor, the catalytic hollow fiber reactor shows similar methane conversion, with a gas hourly space velocity that is approximately 6.5 times higher, a significantly greater CO2 selectivity, and better productivity rates. These results demonstrate the advantages of dispersing the catalyst inside the microstructured hollow fiber as well as the potential to reduce the required quantity of catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call