Abstract
Magnesium alloys offer high potential for lightweight constructions, e.g. in automotive applications. However, their application range is limited due to their low corrosion resistance. In the present study, the influence of corrosion on the microstructure and the depending mechanical properties under cyclic loading were characterized for the creep-resistant DieMag422 (Mg4Al2Ba-2Ca) and AE42 magnesium alloys. In this context, fatigue properties in distilled water and sodium chloride solutions were assessed in constant amplitude tests. The results were correlated with corrosion properties of the alloys, which were evaluated by immersion tests. Corrosion-and deformation-induced microstructural changes were observed by light and scanning electron microscopy (SEM), yielding a structure-property-relationship for a comprehensive understanding of mechanical and corrosive deterioration mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.