Abstract

A Cu-coated C nanofiber (Cu-CNF) composite is added to a Sn-3.5Ag alloy to fabricate a solder nanocomposite using mechanical stirring and a melting technique. The microstructural features of the samples, i.e., the β-Sn grain size and the distribution and thickness of the Ag3Sn intermetallic compound (IMC), are statistically measured. The wettability of the developed solders is tested on a Cu substrate by contact-angle and spreading-factor measurements. The experimental results indicate that the presence of up to 0.05 wt pct Cu-CNFs in the solder matrix reduces the β-Sn secondary dendritic arm spacing significantly. Additionally, the spread ratio and spread factor are improved to 93 and 96 pct, respectively, owing to the adsorption of surface-active CNFs in the solder matrix. Furthermore, the addition of 0.05 wt pct Cu-CNFs to the Sn-Ag (SA) alloy increases the microhardness, tensile strength, elongation percentage (El pct), and toughness by 40, 35, 11, and 33 pct, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.