Abstract

In this work, the high-strength Mg–5Zn–2Al–2Sn (ZAT522, in wt%) Mg alloys was obtained at 220 °C and 130 °C by a two-step equal channel angular pressing (ECAP). For each stage, two passes were used. The results showed a remarkable grain refinement after the first stage of ECAP (A2 samples), leading to a fine-grained structure with average size of 1.40 μm. The additional stage (A4 samples) caused further grain refinement to 1.18 μm, and an ultra-fine grain structure (700 nm) appeared in the precipitate-rich region. The grain refinement mechanism for both samples was discussed in detail. To this end, the original extrusion fiber texture evolved into a new strong texture characterized by the base planes tilted toward the ECAP shear plane, with a higher Schmid factor value of 0.34. Compared with the as-extruded alloy, the yield strength of the A2 samples increased from 180 to 245 MPa, which was mainly attributed to the combined effects of grain boundary strengthening and precipitation strengthening. In the case of A4 samples, the dislocation strengthening resulted in a net increase in yield strength to 335 MPa, while the ductility was significantly reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.