Abstract
The relationship between the as-cast microstructure and mechanical properties of the Al-12Si-3.5Cu-2Ni-0.8Mg alloys produced by permanent mold casting (PMC) and high pressure die casting (HPDC) is investigated. The alloys in both PMC and HPDC consist of Al, Si, Al5Cu2Mg8Si6, Al3CuNi, and Al7Cu4Ni phase. However, the microstructure of the HPDC alloy is significantly refined. Compared to the PMC alloy, the ultimate tensile strength of the HPDC alloy is significantly increased from 244MPa to 310MPa, while the elongation shows a reverse trend at room temperature. At low stress and temperature range, slight variations of stress exponent and activation energy indicate that the minimum creep rate is controlled by the grain boundary creep. Then the minimum creep rate is higher for the specimen with the smaller grain size, where grain boundary creep is the dominant creep mechanism. At high stress region, the stress exponent for the PMC alloy and HPDC alloy is 5.18 and 3.07, respectively. The different stress exponents and activation energies measured at high stress and high temperature range indicates that the creep mechanism varies with the casting technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.