Abstract

The effect of long-term thermal exposure at 700 °C on the microstructure and mechanical behavior of as-cast CrMnFeCoNiAl0.25 was investigated. Results indicated that microscopically, the as-cast alloy was not an equilibrium alloy to maintain a single FCC structure after long-term aging. The strip-like sigma phase (Cr-rich σ phase) and B2 phase (NiAl) precipitated in the FCC matrix and coarsened when the exposure time was increased. Due to the increased volume fraction and the strengthening of these precipitates, the yield strength and Vickers hardness increased considerably with increasing the thermal exposure time up to 2000 h. The yield strength increased from 272 MPa for the as-cast alloy to 993 MPa for the alloy exposed for 2000 h. The hardness increased up to 322 Hv for the alloy exposed for 2000 h. However, the yield strength decreased to 664 MPa for the alloy exposed for 4000 h, owing to the coarsening of precipitates. The alloy maintained a good compressive plasticity after long-term aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.