Abstract
Porous alumina films with thicknesses of a few microns were prepared via a dip-coating technique on steel P92. The coating is shown to protect the steel against massive corrosion, which is typical in the hot reactive environment of coal-fired power plants. To mimic real conditions ground steel plates were coated with a boehmite-sol. This leads to an overall smoothing of the formerly rough surface. In the following short annealing step the inner porous construction with worm-like particles consisting of nano-crystallites and amorphous alumina is formed. Due to the simultaneous diffusion of chromium and iron ions out of the bulk steel material into the porous alumina coating, a dense interface with satisfactory adhesion is formed. However, the film exhibits few local defects like cracks or dense alumina nodules caused by steep edges in the ground surface or agglomeration of boehmite-sol components, respectively. Cracks especially have to be avoided. This problem can be overcome so far by slight modifications in the sol preparation process and surface treatment of the substrates. Nevertheless, the results demonstrate the potential of sol-gel-based alumina coatings as a time-saving and cost-saving protection type for commercial steel P92.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.