Abstract

Large-grained polycrystalline Ni alloy RS5 has been tested in fatigue. Morphology and texture have been characterised using EBSD and utilised to construct representative 3D finite element crystal plasticity models. A stored energy criterion has been used to predict scatter in fatigue crack nucleation life and the results compared with experimental findings. Good quantitative prediction of experimental fatigue lives is obtained. The observed progressive increase in scatter with decreasing strain range is captured. The stored energies for fatigue crack nucleation determined for Ni alloy RS5 and ferritic steel and were found to be 13,300J/m2 and 580J/m2 respectively, showing very good consistency with the corresponding Griffith fracture energies of 48,700J/m2 for Ni alloy and 1900J/m2 for ferritic steel.Local microstructural variations are shown to influence corresponding grain-level stress–strain response. At the microstructural level, purely elastic, reversed plastic and ratcheting behaviour are all observed. In addition, plastic and elastic shakedown are also found to occur which depend upon features of the microstructure and the nature of the applied loading. These phenomena all influence fatigue crack nucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.