Abstract

This work reports the impact of locust bean gum (LBG) in the continuous phase of plant-based proteins, i.e. quinoa protein (QPI) and pea protein isolates (PPI). Experimental measurements such as confocal microscopy, rheological analysis and water mobility via nuclear magnetic resonance (nmr) spin-spin relaxation time (T2) were carried out. The influence of LBG on the rheological properties of QPI and PPI is consistent with an exchange-based nmr interpretation of T2 for biopolymer and water. Addition of LBG increased the viscoelastic properties (storage and loss modulus) and shear viscosities of the mixtures. LBG interacted with both plant proteins, resulting in the formation of more dense protein networks and protein coacervates. A stronger interaction between the PPI and LBG was observed, resulting in higher shear viscosities with lower water mobility as compared to QPI:LBG formulations. Results indicated that the interaction between the protein and polysaccharide played a significant role in the microstructure, its rheological properties and consequently water mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.