Abstract

We investigated the effect of grain size on the piezoelectric properties of ZnO using films of different grain sizes and a fixed thickness of 800nm deposited on a Si substrate by pulsed laser ablation in the temperature range of 300–700°C. All of the deposited films have a crystal structure with a c-axis orientation. The grain size of the grown films, characterized by transmission electron microscopy (TEM), increases with the deposition temperature. In contrast, their piezoelectric efficiency (PE, d33), characterized by piezoelectric force microscopy (PFM), was found to initially increase with the deposition temperature up to 500°C, after which it decreased with further increases in temperature. The maximum PE value is observed for the film deposited at 500°C with a grain size of approximately 60nm. The peculiar PE behavior observed was theoretically explained by a competition between the contribution of the c-axis orientation favoring a larger d33 value due to the enhanced static asymmetry and the strong grain size effect that influences the piezoelectric polarization as a result of domain motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.