Abstract

Microstructure, cathodic polarization, and ohmic resistance on the cathode side of ‐based solid oxide fuel cells have been studied for the intermediate temperature operation range between 700 and 900°C. Starting powder characteristics, powder calcination temperature, and sintering temperature strongly influence the final microstructure of cathodes. Electrochemical performance depends on these processing parameters as well as on the cathode thickness and the contact spacing of current collectors. A decrease in effective electrode area occurs both on the microscopic level with coarse and inhomogeneous cathode microstructure and on the macroscopic level with a wide contact spacing of the current collectors. The smaller effective electrode area causes inhomogeneous current density distribution and results consequently in higher ohmic losses originating from the electrolyte and higher cathodic polarization. These losses are evaluated using cathodes with different microstructures and on the mole percent electrolyte. The influence of current path constrictions on the ohmic and nonohmic losses is demonstrated using Pt current collectors of different geometric spacings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.