Abstract

The established cellular automata model of dynamic recrystallization for 316LN simulated microstructure evolution of recrystallization nucleation and grain growth under different conditions. And on the basis of cellular automata model, the influence of strain, strain rate, deformation temperature on dynamic recrystallization behavior was analyzed. Though the hot compress experiment done on the Gleeble-3500 thermo mechanical simulator, combined with metallographic experiment, the microstructure at deformation temperature of 950 oC, 1050 oC and 1150 oC with strain rate of 0.001 s-1, 0.01 s-1, 0.1 s-1 and 1 s-1 was obtained. Simulation results are compared with metallographic microstructure, the error is small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.