Abstract

The structure, phase composition, and thermal stability of the industrial zirconium alloys, namely, E110 (Zr–1% Nb) and E635 (Zr–1% Nb–0.3% Fe–1.2% Sn), which are subjected to high‐pressure torsion (HPT) at room temperature (RT), 200, and 400 °С have been studied. HPT of Zr‐alloys at RT (10 revolutions) leads to the formation of grain–subgrain nano‐sized structure and to increase the microhardness by 2.1…2.8 times. The increase in the HPT temperature to 200–400 °С leads to the increase in the structural‐element average size. The structural‐element size in the complexly alloyed E635 alloy in all cases is lower compared with the E110 alloy. The hardening of the alloys after HPT at RT and 200 °С is close, and at 400 °С is much less. HPT initiates the α‐Zr → (ω‐Zr + β‐Zr) transformation, which is the main factor for alloys hardening. The α‐Zr → (ω‐Zr + β‐Zr) transformation in the E635 alloy occurs less quickly. The maximum amount (ω‐Zr + β‐Zr) phase in the structure of the alloys is observed after HPT at RT and 200 °C, and the minimum − at 400 °C. During heating, the alloys undergo the reverse (ω‐Zr + β‐Zr) → α transformation which depends on both the alloy composition and HPT temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.