Abstract

The quest for materials with non-collinear magnetic structures has been driven by their unique properties and potential applications in advanced spintronics and data storage technologies. In this study, we investigate the induction of a non-collinear conical state in BaFe12O19 (M-type) nanocrystal fibers through the substitution of Fe3+ ions with diamagnetic Sc3+ ions. This substitution introduces an additional parameter for tuning the magnetic structure and allows precise control over the substitution amount. We demonstrate that the non-collinear conical state remains stable within a temperature range of 125 K to 325 K and can be finely adjusted by varying the Sc3+ substitution amount. The selective occupancy of Sc3+ ions at the 2a, 4f2, and 2b sites within the M-type ferrite lattice weakens the super-exchange interaction between Fe1, Fe2, and Fe5 ions. This weakening disrupts interactions between different blocks S/R (R*/S*) and stabilizes the conical state. These findings highlight a significant approach to modulating non-collinear magnetic structures in hexagonal ferrites, with implications for both fundamental research and practical applications in the development of novel magnetic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call