Abstract

Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21) and results in a suite of dysmorphic phenotypes, including effects on the postcranial skeleton and the skull. We have previously demonstrated parallels in the patterns of craniofacial dysmorphology in DS and in the Ts65Dn mouse model for DS. The specific mechanisms underlying the production of these changes in craniofacial shape remain unknown. High-resolution computed tomography scan data were collected for the presphenoid bone of euploid and aneuploid mice. Three-dimensional morphometric parameters of trabecular bone were quantified and compared between euploid and aneuploid mice using nonparametric statistical tests. Aneuploid presphenoid bones were smaller than those of their euploid littermates and had lower bone volume fraction and fewer, more rod-like trabeculae. The differences in cancellous bone structure suggest that bone development, perhaps including bone modeling and remodeling, is affected by aneuploidy. These differences may contribute to the observed dysmorphology of skull and postcranial skeletal phenotypes in DS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.