Abstract
The effective joining of tungsten (W) and reduced activation ferritic-martensitic (RAFM) steels is crucial to fabrication of the divertors and first wall of future fusion reactors. In the present work, a low-activation Fe-based amorphous alloy of Fe67.8Cr11.5Si2.1B18.6 (at. %) is designed as the filler metal for brazing W and RAFM steels. Crack-free joint has been achieved with the amorphous alloy filler and a vanadium interlayer metal by short-time vacuum brazing at 1270 °C. Layer structures composed of intermetallic phases and single solid-solution phases, respectively, are alternately formed in the W/RAFM steel joint, exhibiting alternating hard and soft mechanical characteristic. Long-distance diffusion of W atoms to the steel substrate is blocked by the formation of FeW2B2 and Fe3B phases, and Si and B elements are confined within the main bonding seam of the joints. Microstructure recovery for the steel is realized following the standard heat treatment procedures. The present results suggest a promising way of making strong and tough W/RAFM joints with low-activation Fe-based amorphous alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.