Abstract

Most metallic nanoparticles exposed to air at room temperature will be instantaneously oxidized and covered by an oxide layer. In most cases the true structural nature of the oxide layer formed at this stage is hard to determine. As shown previously for Fe and other nanoparticles, the nature of the oxides form on the particles can vary with particle size and nature of the oxidation process. In this paper, we report the morphology and structural features of the native oxide layer on pure Ni and Cr-doped Ni nanoparticles synthesized using a cluster deposition process. Structural characterization carried out at the atomic level using aberration corrected high resolution transmission electron microscopy (HRTEM) in combination with electron and X-ray diffractions reveals that both pure Ni and Cr-doped Ni particles exposed to air at room temperature similarly possesses a core-shell structure of metal core covered by an oxide layer of typically 1.6 nm in thickness. There exists a critical size of approximately 6 nm, below which the particle is fully oxidized. The oxide particle corresponds to the rock-salt structured NiO and is faceted on the (001) planes. XPS of O-1s shows a strong peak that is attributed to (OH)-, which in combination with the atomic level HRTEM imaging indicates that the very top layer of the oxide is hydrolyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.