Abstract

The microstructure in the joints of a non-heat-treatable aluminum–magnesium 1565chM alloy sheets fabricated by friction stir welding is studied. The structure near the interface between the base metal and a welded joint is examined. Friction stir welding results in a gradient structure with ultrafine grains at the center of the welded joint. The structure in the welded joint forms by the mechanism resulting in the formation of a layered ultrafine structure due to plastic deformation by shear and rotation of structural fragments. Layers are assumed to form due to the balance between the strain hardening and the softening caused by frictional heating and heat released during deformation. An analogy between the microstructure in the joint fabricated by friction stir welding and the microstructure formed by sliding friction is drawn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.