Abstract

The multichannel structure of the current channel of an atmospheric-pressure diffuse discharge excited in a 10-cm rod-plane air gap was investigated using the imprint technique. A voltage pulse with an amplitude of 240 kV, a duration of 180 ns, and a rise time of 14 ns was applied to a 1-cm-diameter bullet-shaped cathode with a tip curvature radius of 0.2 mm; the discharge current reached 350 A. It is found that the diameter of the discharge channel in the anode plane varies in the range 2.5–9.7 mm from shot to shot. The overall imprint of the current channel is formed of 170–9500 imprints of microchannels with an average diameter of 5–20 μm. The parameters of the observed microstructure do not correlate with variations in the main electric characteristics of the discharge and the parameters of the generated X-ray pulse. It is shown that the formation of the microstructure is related to the onset of cathode-directed plasma structures developing from the anode. It is suggested that the same mechanism is responsible for both the formation of the current channels structure and the anode microstructure of diffuse nanosecond discharges developing in atmospheric-pressure air gaps with a highly nonuniform electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call