Abstract

Martensitic phase transformation of zirconia (ZrO2), when realized from the superelastic effect, has immense potential in energy applications, such as micro‐actuation and high‐energy dissipation/damping. In this study, martensitic transformation in ZrO2 is studied using a newly developed microscale phase field model, which is scale‐independent and contains an averaged gradient term. The model is implemented using the FEniCS package in Python. With a thorough explanation of the model construction, the mechanics of phase transformation are detailed, and the material behaviors under different stress conditions are discussed. Mesh sensitivity, multivariant evolution, and the effect of particle size are analyzed to understand the martensite evolution in superelastic ZrO2. This work provides new insight into the martensitic phase transformation behaviors of micron‐sized spherical ZrO2 particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.