Abstract
The microstructure of sodium or potassium added Mg-23.5 mass%Ni eutectic alloy was observed and the effect of sodium and potassium addition on the eutectic structure was investigated. All alloys showed the eutectic structure which composed of Mg phase and Mg2Ni phase, and no evidence of the sodium or potassium precipitation occurred. For the sodium added and furnace cooled alloy, the lamellar spacing in the eutectic structure became a little narrow and the Mg2Ni phase tends to become fragmentary as the amount of sodium increases. The sodium addition has a little effect for the refinement of the eutectic structure. For the potassium added and furnace cooled alloy, the lamellar spacing of the eutectic structure became clearly narrow even by the 0.1 mass% potassium additions. The morphology drastically varied in more than 0.5 mass% potassium added specimens, that is, the refinement and fragmentation of the Mg2Ni phase occurred. The potassium addition has a large effect for the refinement and the fragmentation of the Mg2Ni phase in the eutectic structure. For the water quenched specimens, the eutectic structure was extremely fine and globular shape with and without the additive element. The refinement effect by the water quenching is remarkably high even as the non-added specimen. The effect of sodium and potassium addition on the refinement of eutectic structure is not clear in the case of the rapid cooling speed during solidification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.