Abstract

The laser melt injection (LMI) process has been used to create a metal matrix composite consisting of 80μm sized multi-grain WC particles embedded in three cast duplex stainless steels. The microstruture was investigated by scanning electron microscopy with integrated EDS and electron back-scatter diffraction/orientation imaging microscopy. In particular the search of the processing parameters, e.g. laser power density, laser beam scanning speed and powder flow rate, to obtain crack free and WC p containing surface layer, has been examined. Before the injection of ceramic particles into remelted surface layer, the influence of processing parameters of laser surface remelting on the microstructure and properties of selected duplex steels was also investigated. Although after simple laser surface remelting the austenitic phase is almost not present inside remelted layer, in the case of LMI the austenite was observed in vicinity of WC particles, due to increase of carbon content acting as austenite stabilizer. The diffusion of carbon in the reaction zone results also in a formation of W 2C phase in the neighborhood of WC particles with a strong orientation relationship between them. The maximum volume fraction of the particles achieved in the metal matrix composite layer was about 10% and a substantial increase in hardness was observed, i.e. 575 HV0.2 for the matrix with embedded particles in comparison to 290 HV0.2 for untreated cast duplex stainless steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.