Abstract

An improvement of power plant efficiency necessitates an increase of the process parameters and thus enables a reduction of consumed primary resources. Furthermore more efficient, sustainable, flexible and cost-effective energy technologies are strongly needed. For this reason the current research concentrates on a new concept of high-chromium fully ferritic stainless steels which are strengthened by a combination of solid-solution and intermetallic Laves phase particles. Such steels exhibit favourable creep, thermomechanical fatigue and steam oxidation behaviour up to 650°C. Based on detailed analysis by high-resolution scanning and transmission electron microscopy the particle size evolution and compositions were studied. Variations in chemical compositions were analysed experimentally and compared with thermodynamic equilibrium composition modelling results.This paper is part of a thematic issue on the 9th International Charles Parsons Turbine and Generator Conference. All papers have been revised and extended before publication in Materials Science and Technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.