Abstract

A type of synthetic diamond single crystal about 0.4–0.5 mm in dimension prepared under high pressure–high temperature (HPHT) in the presence of a FeNi molten catalyst was quenched from HPHT and irradiated with 300 keV electrons at room temperature. Transmission electron microscopy was employed to examine the microstructure of the diamond single crystal before and after electron irradiation. It was found that there exists a large amount of cellular interfaces in the quenched diamond sample, which indicates the growth condition of the diamond under HPHT. Hexagonal dislocation loops about several tens of nanometers in dimension were observed in the high-pressure-synthesized diamond single crystal before electron irradiation, which strongly suggests that a number of vacancies were quenched-in due to rapid quenching from high temperature at the end of diamond synthesis, and were aggregated in the synthetic diamond to form vacancy disks on the (111) plane, the collapse of such vacancy disks forming vacancy-type dislocation loops. After electron irradiation, it was found that defect clusters present as interstitial-character dislocation loops were formed in the electron-irradiated region of the diamond. The interstitial dislocation loops grow with increase of the irradiation time. The present study, in comparison to previous work on ion implantation on diamond, indicates that electron irradiation does not induce a phase transformation but produces interstitial dislocation loops due to the migration of interstitial atoms and vacancies. The result of the study directly indicates that interstitials and vacancies in diamond are mobile at room temperature under electron irradiation. Nitrogen, as the most important kind of impurity contained in the HPHT as-grown diamond, probably acts as nucleation of the interstitial loops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.