Abstract

The microstructure of carbon blacks is investigated by X-ray diffraction peak profile analysis. Strain anisotropy is accounted for by the dislocation model of the mean square strain in terms of average dislocation contrast factors. Crystallite shape anisotropy is modeled by ellipsoids incorporated into the size profile function. Different grades of carbon blacks, N990, N774 and N134, untreated, heat-treated and compressed at 2.5 GPa have been investigated. The microstructure is characterized in terms of crystallite size-distribution, dislocation density and crystallite shape anisotropy. Heat treatment results in increased vertical and lateral sizes of graphitic crystallites. Postproduction pressure treatment has little effect on the average sizes of the crystallites, however, it affects the crystallite size distribution function. The average sizes of the crystallites obtained by X-ray diffraction agree with those estimated from Raman spectra. Applied pressure affects the magnitude of strain within the crystallites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call