Abstract

Abstract The microstructures of two metastable high-alloyed CrMnNi cast TRIP steels and a stable AISI 316L austenitic stainless steel were studied in detail after tensile and cyclic deformation. Electron backscattered diffraction was employed to localize the martensitic phase transformation and electron channelling contrast imaging to describe the typical dislocation arrangements. These were complemented by transmission electron microscopy and by scanning transmission electron microscopy performed in a scanning electron microscope. The TRIP steel with the lowest austenite stability shows a more pronounced martensitic phase transformation realized from the austenite via the intermediate formation of ∊-martensite. Martensitic phase transformation also occurred in the stable 316L austenitic stainless steel with a small volume fraction of α′-martensite, but only with cyclic deformation at low temperatures and/or at very high plastic strain amplitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.