Abstract

Nanodimensional copper ferrite has been successfully synthesized via a modified complexometric method using ethylenediaminetetraacetic acid and citric acid as the complexing agent and the fuel, respectively. The physical and chemical behaviors of this spinel ferrite material have been explored by using different kinds of techniques including thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HR-TEM), vibrating sample magnetometry (VSM), and N2 adsorption–desorption isotherm. The crystallite size falls in the range 13–30 nm depending on the calcination temperature required for phase formation. The surface morphology of the polycrystalline ferrite material is almost spherical. The band gap value and BET-specific surface area are determined to be 1.40 eV and 32 m2 g−1, respectively. This spinel ferrite behaves as a mesoporous (2–50 nm) material, and the material formed at a higher calcination temperature has agglomeration tendency. The CuFe2O4 exhibits typical soft ferromagnetic behavior with saturation magnetization value of 52 emu g−1. Of interest, it has the capability to degrade 96% of methylene blue in acidic medium (pH = 4) in 45 min under the visible light in presence of H2O2 as oxidant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call