Abstract

In this article, the hot stamping-bake toughening process has been proposed following the well-known concept of bake hardening. The influences of the bake time on the microstructure and the mechanical properties of the hot stamped-baked part were studied by means of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and mechanical tests at room temperature. The results show that the amount of the retained austenite was nearly not changed by the bake process. Also observed were spherical Cu-rich precipitates of about 15 nm in martensite laths. According to the Orowan mechanism, their contribution of the Cu-rich precipitates to the strength is approximately 245 MPa. With the increase of the bake time, the tensile strength of the part was decreased, whereas both the ductility and the product of the tensile strength and ductility were increased then decreased. The tensile strength and ductility product and the tensile strength are as high as 21.9 GPa pct, 2086 MPa, respectively. The excellent combined properties are due to the transformation-induced plasticity effect caused by retained austenite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.