Abstract

Nanostructured yttria stabilized zirconia (YSZ) coatings were deposited by Atmospheric Plasma Spraying (APS). X-ray diffraction (XRD) was used to investigate their phase composition, while scanning electron microscopy (SEM) was employed to examine their microstructure. The coatings showed a unique and complex microstructure composed of well-melted splats with columnar crystal structure, partially melted areas, which resembled the morphology of the powder feedstock, and equiaxed grains. Vickers microhardness of nanostructured zirconia coatings was similar to that of the conventional ones and strongly depended on the indentation load. Otherwise, a higher thermal shock resistance was found. This effect was addressed to the retention of nanostructured areas in coating microstructure and to the corresponding high porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.