Abstract

ABSTRACTThe influence of hafnium element’s incorporation on a Cu–xHf–13.0Al–4.0Ni (wt-%) (x = 0.5, 1.0 and 2.0) high-temperature shape memory alloy was investigated systematically. The results show that the matrix of Cu–xHf–13.0Al–4.0Ni (x = 0.5, 1.0 and 2.0) alloys is 18R martensite, and an orthorhombic-structured Cu8Hf3 phase is formed and distributed at the grain boundaries. The grain size is significantly reduced with increasing Hf content. The mechanical properties of Cu–xHf–13.0Al–4.0Ni (x = 0.5, 1.0 and 2.0) alloys are improved by Hf doping due to the combination of refinement strengthening, solid solution strengthening and second phase strengthening. After heating under pre-strain of 10%, the shape memory effect of the Cu–1.0Hf–13.0Al–4.0Ni alloy reaches 5.6%, which is obviously higher than that of the Cu–13.0Al–4.0Ni alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call