Abstract

In this study, 2024Al matrix composites reinforced by SiC particles (SiC-2024Al) and nanocrystalline high-entropy alloy particles (HEA-2024Al) fabricated by powder metallurgy were systematically compared for the first time. There is a significant difference in microstructure and mechanical properties as well as machinability between two kinds of composites. In term of microstructure, when the volume fraction of reinforcements was 10%, both SiC-2024Al and HEA-2024Al composites showed a homogeneous particle distribution in the matrix. With the increase of reinforcement content, HEA-2024Al composites presented denser microstructure than that of SiC-2024Al composites. The composites with 10, 20 and 30 vol.% HEA reinforcements all showed better plasticity than that of the SiC-2024Al composites with same volume fraction of reinforcements, which was related with better particle distribution and interface bonding. However, the strength showed the opposite tendency in the two kinds of composites. Selecting 10SiC-2024Al and 10HEA-2024Al composites as examples to explore the difference in the yield strength of two kinds of composites, it is ascribed to the dislocation punched zones around interface between the Al matrix and reinforcements, which was analyzed in detail by a combination of calculation, nanoindentation tests and finite element analysis. Additionally, HEA-2024Al composites showed better machinability than those of SiC-2024Al composites. This work provides insight into the application of particulate reinforced Al matrix composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.