Abstract

Ti-6Al-4V alloy have been used widely for biomedical application, but its elastic modulus is still higher compared with human bone. Moreover, it contains V and Al that have been reported as toxic element. In this study new beta type Ti-6Mo-6Nb-xSn (0, 4, 8 wt.%) have been developed. The aim of this study was to evaluate the Sn addition on microstructural transformation, mechanical behaviour, and corrosion resistance of Ti-6Mo-6Nb-xSn alloys. The Ti-6Mo-6Nb-xSn alloys produced by arc re-melting process and the obtain ingot were characterized using optical microscope, x-ray diffractometer, ultrasonic evaluation, Vicker’s hardness tester, and polarization test to evaluate the corrosion resistance. The result showed that Ti-6Mo-6Nb-8Sn has the lowest elastic modulus and Vicker’s hardness value. The Sn addition could suppress α phase formation. Ti-6Mo-6Nb-8Sn has lower corrosion rate compared to commercial Ti6Al4V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.