Abstract

To simultaneously obtain superior superelasticity and biological properties, single- and multi-layer Ti–23Nb coatings were deposited on a cold-rolled NiTi substrate using laser metal deposition (LMD). The microstructure of the single-layer coating consisted of a cellular structure with a grid size of ∼300 μm in the eutectic layer, strip structures and prior β-(Ti, Nb) phases surrounded by the Ti2Ni(Nb) phase in the Ni diffusion zone. In contrast, the microstructure of the multi-layer coating consisted of α′, α′′, and prior β phases, which arise from the partition of Nb. Compared with the NiTi substrate, the Ni ion release concentration of the single-layer coating is reduced by 45% with similar nano-mechanical behavior, i.e. a nanohardness, H, of ∼4.0 GPa, a reduced Young's modulus, Er, of ∼65 GPa, an elastic strain to failure, H/Er, of ∼0.06, a yield stress, H3/Er2, of ∼0.016 GPa, and a superelastic strain recovery, ηsr, of ∼0.3. The reduction of Ni ion concentration for multi-layer coating after 35 days is even better at up to 62%, but at the cost of a degradation in the mechanical properties. The LMD coatings have a high dislocation density, and their creep is controlled by dislocation movement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call