Abstract

To improve the mechanical and wear performances of the Ti alloy, core-shell particles of different volume fractions were introduced in Ti matrix by means of spark plasma sintering (SPS). Optical microstructure observations show that core-shell network Ti-O alloys with various continuities were formed. Compressive mechanical testing shows that increasing the reinforcement content enhances the strength and decreases the plasticity of Ti-O alloys, which is ascribed by the increased O content and continuity of the network architecture. The improved wear resistance of the Ti-O alloys with an increasing reinforcement content can be attributed to the simultaneously increased strength of the Ti-O alloys and the O content in the worn scar, both of which can be related to the beneficial effect of the core-shell particles. Excellent combination of compressive performances of Ti-O alloy of 70 wt% reinforcement endows the alloy with optimal wear resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.